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The Problem of Analoq Fault Analysis

Analog fault analysis is a method of findina a description (either
in terms of the physical analog system or its model) of the way in which
an analog system has failed. A failure (or fault) may manifest itself in
many different ways, depending on the nature of the system. In the present
study we consider the system to be a linear, analog electronic circuit,
with at least two accessible terminals. We treat the accessible terminals
as a nulti-port network. The behavior of the network can be determined by
measuring each of the severa] independent (complex) multi-port parameters
(transfer functions), possibly at several frequencies. Thus, if m/2
independent, complex measurements are made, the network performance is
given in terms of m real numbers, each of which is a function of the
parameters of the network. We denote the measurement set by the real
vector ﬂ £ col (ﬁi). Similarly, we denote the corresponding set of multi-
port parameters computed from the network model by the real vector

M 24 col (Mi)'

We will assume there are n real network parameters, each of which is
either a resistance, capacitance, inductance, or controlled source gain.

We denote the parameter set by the real vector x & col (xi).

The fault analysis problem may be stated as follows: given m real

measurements and the network model containing n real parameters, find the _

values of the n real parameters which produce the m real measurements.

This requires solving the system of m non-linear equations in n unknowns

M(x) =M

()




Currently available analog automatic test equipment (ATE) allows the
preprogramning of a sequence of test signals and measurements [1]. The
software interpretation o( these measurcments is mostly limited to a
functional test of the component or module tested. To achieve greater
resolution of the fault with currently available ATE (i.e., to find the
faulty component or integrated circuit in the module), requires access to
more terminals (test points) and the making of a more complex sequence of

measurements.

Often in practice the number of terminals available for measurement
is limited. For example, in troubleshooting existina equipment, available
test points are fixed by the design. In the desian of new equipment, it
is desirable to keep the number of test points as small as possible to

avoid an excessive number of pins in the connectors.

The present study was directed at improving the reliability of hiah
resolution (down to the component or node if necessary) analog fault
analysis from measurements at the accessible terminals. The measurements
in this study rcquire applying sinusoidal sources and finding the maagnitude
and phase relationships of the steady state responses, i.e., the measure-
ments are a set of complex multi-port parameters at the accessible terminals.
The fault is isolated by solving (1) for the n-dimensional parameter vector
X. Recent work in analog fault analysis has been directed toward finding

an efficient way to solve these equations.

1.1 Summary of Previous Work

In solving (1), the number of network parameters may be greater
than, equal to, or less than the number of measurements m. If m<n
it is not possible to solve for the parameter set x, since in this

case (1) usually has infinitely many solutions. Ransom and Saeks [2]

o=




approached this problem by finding the solution to (1) which minimizes
the norm || x - x, |1, where X, is the nominal paramcter set. The
difficulty with this approach is that the solution assumes, roughly
speaking, that the most likely state of the element values in the net-
work is the one which causes the smallest drift from the nominal values
consistant with the measurements. This assumption excludes the possi-

bility of catastrophic faults (open and short circuits).

If m 2 n, then the non-linear equations qiven by (1) are often
solved using optimization techniques by finding m;n [ M(x) - ﬁ}ll,
where sometimes the normvmay be reduced to zero if?n = n. This approach
was taken by Chen and Saeks [3], using an efficient algorithm to
evaluate M (x). In order to accommodate catastrophic faults (open and
short circuits) by this method, each element in the parameter space
must be searched over the range (0, «), which is not practical because

of the prohibitively large number of evaluations of the function ! (x).

In this project we continue to seek a way to overcome the diffi-
culties of the two methods described above, viz. that catastrophic
faults are overlooked altogether or that they are found at the cost of
very lenqgthy computation., The approach described in this report is to
modify the parameter set x to include the set of all single short
circuits involving inaccessible nodes. The remaining parameters are
branch admittances or controlled source gains. Searching over short
circuits eliminates the nced to search over very large values of the
branch admittances. It is also unnecessary to search over very large
values of controlled source gains, since this mode of failure is
extremely unlikely. Johnson [4], [5] has described a very efficient

algorithm for evaluating the function M (x) in the presence of a short




circuit, The efficiency results from the fact that the network
change caused by the short circuit results in an alteration of the

(1naccessible) nodal -admittance matrix by a matrix of unit rank,

% As a result, the response M (x) of the faulted network can be

computed (in terms of the nominal response) using many fewer multi-

plications than are required for an original analysis. Sparse matrix
techniques were also used to reduce computation time. The efficiency
of this algorithm makes it practical to exhaustively search for a
minimum of || M (x) - M || over all possible single short circuits
involving an inaccessible node. The test examples described by
Johnson [4], [5] show that short circuits can be reliably located

by the algorithm, even though measurements were made only at one

frequency, and parameter drift was not taken into account.

Performing the measurements (and analysis) at more than one
frequency increases the number of measurements m without changing
the number of network parameters n, This may improve the reliability
of the fault analysis if all the measurements are independent. The
problem of independent measurements is discussed in some detail by
Sen and Saeks [6] - [8], who unfortunately stop short of describing

exactly how to choose the measurements and frequencies.

2. New Results in Analog Fault Analysis

The study undertaken by the author was directed toward improving the
reliability of analog fault analysis (isolating short circuits, open
circuits and parameter changes) while keeping the algorithm as fast and

efficient as possible. Specifically two separate studies were done:




(a)

(b)

Introducing parameter changes into the current algorithm.

The current algorithm searches for a minimum of || M (x) - & |
over short circuits only. By searching over the network parameters
(resistances, capacitances, inductances and controlled source
gains) as well, the algorithm should be improved, because of the
expanded description of the fault. In addition it was hoped that
the algorithm would be made more reliable (i.e., it was hoped
that the algorithm would not indicate faults which were not
present, but instead would find only those that were present).

An efficient algorithm for calculating the network responses

M (x) in the presence of a parameter change was developed and
included in the search for min[l M (x) - ﬂ ||. This is described
in detail in Section 2.1. %

Independent Measurements. Increasing the dimension m of & (and
also of M(x))by adding independent measurements should improve
the accuracy and resolution of the fault analysis. In most
practical cases, the number of accessible terminals is fixed, so
the only way to increase the number of measurements is to use
more than one frequency. It is important to determine if the

set of measurements is independent. The work on this problem

is described in detail in Section 2.3.

We have discussed how the network parameters may be determined
by minimizing the norm of the difference between the measured
and computed network responses || M (x) - ﬁ.ll, where M and ﬁ
are both real vectors of dimension m. In the discussion which
follows, the network responses are considered to be y-parameters

at the accessible terminals, all referred to a common (accessible)

node. Figure 1 shows a network with p + 1 accessible terminals

ofe




from which we define the pxp y-parameter matrix

. Y1z s
FPY odap o oeei Yoo

ne

ot ez v Ymp

where, as usual,

Vk =0, k#r

In (3) IS and Vr are the phasor response and source, re-

spectively. The matrix y therefore represents p2 complex

Figure 1 - p-Port Network with p+1 accessible terminals.

2 &

parameters or 2p~ real parameters. These 2p° real parameters

form the vector M of dimension m, i.e., m & dim M= 2p2, an
even integer. (The exact order in which the elements of
vector ¥ are formed from the elements of matrix y is not

important. However, the measured responsc vector ﬁ_is formed

aBe

(2)

(3)




T from the measured y-parameter matrix i_by the same rule used to

form one computed response vector M from the computed y-parameter

matrix y).

dw -

We close this section by displaying a formula derived by

Johnson [4], [5], which will be used in subsequent sections.

Johnson shows that the pxp matrix of measurable y-parameters

defined above is given by
re A Y (- A (AY AN Ay T AT (4) F

where

is the node-to-branch incidence matrix (as defined by

and Kuh [9] partitioned into the accessible (AJ) and the
“inaccessible (52) nodes, and Y, is the branch admittance
matrix [4], [5], [10]. If the network contains b branches,
Y, is a sparse bxb matrix whose elements are simple functions
of the branch admittances and the controlled source gains. It
therefore plays the ro1é of the parameter vector x and can be

k| expressed in terms of x.

2.1 Parameter Changes

In order to find m@n || y (Yp) - y || it is important to compute
b

1-(1b) efficiently. Such an algorithm has been found if a change is

made in only one parameter at a time. To derive this result, suppose

Yp is changed by the bxb matrix A . Then from (4) the y-parameter

T T —

matrix becomes




gy

' Ay (Ypta) [0 = A (A, (¥p4a) AD)TY AL(Yyea)] AT (5)

The major computational difficulty in evaluating the right side of
(5) is computing the inverse of the new inaccessible nodal
admittance matrix V5 = A, (Yy+a) QE . Define the qxq matrix

Y, & ﬂaxbﬁl » where q is the number of inacessible nodes. Thus

Xé =Y, ¢ QQA_QE and we wish to find the inverse of Y5 .

During this investigation we have discovered that if only one

network parameter is changed, A can be formed as the outer product

A= w! . (In

=

of two vectors u 2 col (u]) and v 2 col (Vi)' i.e.
this case A has unit rank). The specific way in which u and v are
formed depend on whether the network parameter chanaed is a passive
admittance or a controlled source. The several special cases are
discussed in Sections 2.1.1 through 2.1.5, which the reader may skip

without loss of continuity.

The product AQA_A; may therefore be expressed as the outer
product QXT , where U 2 Aou and y_ﬁ Aoy are both vectors of dimension
q, where q is the number of inaccessible nodes. We may now write

e T
R AERTAR (6)

Householder [11] shows that the inverse of Yé can be formed from

T

-1 T
=T L1~ WleYy

l"] ‘] ".' "]
Y LU vy, (7)

-2

In (7) the inverse of 12 is known from an initial computation (in
terms of the nominal parameter values) which is performed only once,
and 1+ !T 15] U is a scaler. Thus the right side of (7) may be

found without a matrix inversion,




The Fortran code for computing Xé] using (7) has been written
and may be found in Appendix 1 (SUBROUTINLC Y2PI2). Sparse matrix

techniques have been used to store the vectors U and V.

The purpose of the next several sections (2.1.1 through 2.1.5
is to show that a change in any network parameter chanqges the branch
admittance Y, by a matrix of unit rank, i.e., Y) = Y, + 2, where
4 = g.xr, and u & col (uy), v & ot (v;). An efficient computer
program for forming the vectors u and v using sparse matrix techniques

has been written, and the listing may be found in Appendix 1

(SUBROUTINE UVVEC).

Johnson and Pennington [10] have shown that in a network con-
taining b branches, the bxb branch admittance matrix can be formed

from the element matrices as follows:
= \'] 2
Yo= (L+YR -7 (Y -yM+G) (8)

where 1 is the bxb identity matrix, Y is the bxb matrix diaq (Yi)
and Y, is the self-admittance of branch i; R, is the bxb matrix
{Rij} , where Rij is the transistance in branch J controlled by the
current in branch i3 a, y, and G are defined similarly and contain

branch coupling in the form of current gains, voltage qains, and

transconductances respectively.

2.1.1  Parameter Change is_a Passive Amqigtgﬂpc*

If a change is made in branch admittance k, then Y
becomes Y + 8, where 4 is zero except for element k. A little

algebra shows that Y, has been changed to Yo = Y, + &, where

+The reader may omit this scction without loss of continuity.

Sk




& = W (aX) - () X - (ak) (aX)

and

><
"
—<
1
=<
+
=

Equation (9) simplifies since (aW) (aX) = o, which may be

shown as follows. After some algebra, using (9),

() (aX) = (a,R, &) (= 1),

R
= 0. Suprose branch admittance k is

which is zero if A R A

=y
‘ne A =
changed, and define B & Bm Ay Therefore B, i3 g (R m in v)ml'
But all elements of A »y are zero except for element (k,k).
Bij x Dy 3K
B = (Rydyy (A » ¥
Now A fy&n b, = a, B. Consider the elements of column k of this
matrix:

(A Rn -y)vk g (Ay)ri 8

From (10) we see that Ay Rn &y is zero except for elements in
column k. Furthermore the summation nced be carried out over
element i = r only, since (Ay)ri v er

unless r = Kk, so a, R by contains only one non-zero element,

namely (A R —y)kk (a )kk(&")kk(A )kk lut this last
expression is zero because branch k never contains a trans-

resistance controlled by branch k. (This is modelled instead

as a simple self admittance). QLD.

=0, r#{. Finally, (A ). =0

(9)

(10)

(1)
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After deleting the last term in (9), the change in the
branch admittance matrix Y due to a change in branch

admittance k becomes

= - + -
Asby -4y ptab -abyu
; (12)
% éy U B Sy R E'm
where é ¢ 2. 1-~m is the Norton equivalent current
coupling matrix and G ﬁn Y u is the Norton equivalent
transconductance matrix (see Johnson and Penninaton [10])).
will now show that all terms on the right side of (12) contribute
elements only to one row or column (except the term & By QN )y
if only one network parameter is changed. As a result, A may
be written g_!T, as explained in Section 2.1.
1% Qy places a term in element (k,k) of a.
2. (éy ll—)'ij > '}':‘ (Ay)im llm\)'
= (ay)gy wy;
= O, 1%k
Therefore o, u places elements only in row k of A.
3. (addys =1 o |
~y'ij & W y m1 N

“ij ()55
W JER
Therefore é_gy places elements in column k of A, if branch k
contains current controlled sources.
4, ( _Qy ):“im (A -‘-)mj
= agx (8 Wy

=gy (A Dgy gy

e




If such a term were present, the network model would contain

a controlled source in branch i (&ik) which was controlled by
the branch current of a branch containing a controlled source
(branch k contains source “kj)' Such a condition is not

allowed in the model [10]}, so aa w=20.

The final two terms in (12) contain the product gy &u'

Element (i, i)of this matrix is

(8, Rplyj

"

m’mj

‘)‘; (Ay)im (R,)

"

A ) (&u 1] A SR B

(Ay Bm)ki i (Ay)kk (P\l)kj

-
H
>

We now consider the final two terms in (12).

% (ﬁy R D\'j 2 1)1:1 (‘V m)'““ YmJ
¥ (AV —HQIJ Y AP K
(8 Ry Wy = aydy Radig Vi i

Therefore Ay R, Y contributes terms along row k of 4 .

6. (A m)11 5 z (Ay 1n in (Gm)mj 0,11k

(A R G ) g % (A m)km (rm)mJ

% % (ay i (R iy (Cm)ml

(i b Rdin g g

Therefore ay R Gm contributes terms along row k of A ,

although few, if any, such terms arc likely to exist since

the presence of this temm requires that the network contain

«l2a
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a transresistance controlled by the current in a branch con-

taining a voltage controlled source.

2.1.2 Parameter Change is a Transresistance+

If a change is made in transresistance (Rm)ij‘ then Bm
\ + rhere i P : T S
becomes R, A A, is zero except for element (Ar)13
Replacing R, by R + in (8) and performino some aloebraic

A,
reduction, Y, becomes Y, + A’'where

M e 1 03)

Both terms in (13)-contain the product X-ﬂr . Expanding

element (r, s) of Y (W

(!‘A‘l')rs , g‘ Yl'm (Ar)ms
N (Ar)rs B Frpit, 513
(Y adiy = Yy (8pdyy

Therefore !»Ar has only one non-zero element (i, j). We now

expand element (r, s) of both termms of (13).

o (L8 D m L Ay Yo
= (L Vs

it RS RS S B

(Ya Y)

A Vg = Yy ()35 Y55

t The reader may skip this section without loss of continuity.

<13«

o
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e e

Therefore Y A, Y contains a single non-zero element (i, j).

. (!-ér gﬂ : 2 (Y rm (Gm)ms
=0, rfgi,m¢gJ
(¥ A gm) gl b A-Y‘)‘l,) ( m)js
Yii (Ar)1g (G m)Js e

Therefore Y A laces terms in row i of A .

by Gy P

2.1.3 Parapeter Change is a Current_ﬁgjgf

If a change is made in current gain a5 then a is

changed to o« + a_, where a_ is zero except for element (a ).
e | ¢ | a’1)

Replacing o by a + 4 1in (8), after some aleoebraic reduction

Y, becomes Y.+ A, where
~A-2_91~¢-Y-°!\-m-(3m (14)

We now expand element (r, s) of both terms of (14).

Vo g Uhig ™ X (a)

i \
S . Ty R G AR
(8, Wiy = (Bg)yy ¥

Therefore Y contains a single non-zero element 5 T o

)

A
2y

)

2. (éu Eh rs m’ms

. % KE, o 15
=0 ,rfi,m¢J
(Au Em)is' (Aq)ij (ém)js » Vs

Therefore o G contributes elements in row i of A .

+ The reader may skip this section without loss of continuity.

.




2.1.4  Parameter Change is a Voltage Gain+

5 If a change is made in voltage gain Mij o then p is changed

to yu + A where 4, is zero except for element (Au)ij' Replacing

wbyu+ év in (8), after some algebraic reduction !b becomes

Y, * 4, where

A=-YA -aVYa
- v— el ety

We now expand element (r, s) of both terms of (15).

2 (_Y. A‘u)l"s e z,‘ Yrm (Ap)mS
g PR OISR R
(& Jes =¥, (2 )

8.43 ° Y41 Myl

Therefore Y a contributes only one term to A .

i 2. fa X-év)rs i % A (X8, s
e ntY 83
(31%%j=%iqﬁhj
=&” Vi (Au)]-)- VP

Therefore g_!_éu contributes terms down columnj of a .

.15 Parameter Change is_a_Transconductancet

If a change is made in transconductance (Gm)ij

, where by is zero except for element (

then gm is

+ T3
changed to G A 99)13.

i. t The reader may skip this section without loss of continuity.

Yoy

(15)




Replacing (N by s gg in (8), after some algebraic reduction

Y, becomes !b + A, where

= +A \
A=45*tad, (16)

We now discuss both terms in (106).

1. 4, contributes only one term, (A ). , to A .

AR
2 n ég)rs =§, O om (Ag)ms =D . mPi,s¥)
(9_ ég)l',) =Gf‘i (AQ)iJ .o

Therefore o A_ contribute terms down column j of a .




2.2

Finding Independent Measurements

In Section 1 we discussed the problem of solving the nonlinear
equation M(x) = ﬁ » In which x is the unknown parameter vector of
dimension n, ﬁ is the vector of m network responses measured at fhe
accessible terminals, and M (x) is the vector of m network responses
calculated from the network model. The three cases (m<n, m=n, m>n)
must be considered separately. Ransom and Saeks [2] have discussed
the underdetermined case (m<n), which is not very practical because
the fault cannot be resolved satisfactorily in this case. The second
and third cases (m2n) can be solved by finding the parameter vector x

which winimizes the norm ||M(x) - ﬁ}] . (This approach has the

advantage of taking measurement error into account in a sensible way
in the overdetermined case, m>n). In Section 2, we discussed the
solution to this optimization problem by means of a search over the

parameter set x. An alternative approach, which provides some insight

into the question of independent measurements, is to expand M{x) in a
Taylor series about the nominal parameter set Xy If we truncate

the Taylor series after the linear terms, we obtain the approximation

Mix) = Mlx,) + E(x ) (x - x,) (16)
where F(x) is the Jacobian Matrix defined by ~\\}
A
{f.(?i)} ] (17)
ij X,
J
: B T S SRR
J 4, s wany B

From (16) the linearized form of the equation M(x) = & is determined
to be F(x )(x - x,) = ﬂ = M(x,)» in which, as before, dim {x - x) = n

and dim (ﬂfﬂ) = m. Since we are treating the overdetermined case m>n,

’

«17= ‘ )




we proceed by minimizing ||F (x-x) - (ﬁ:ﬂo)ll » where F_ 4 Fx,)
and to

first defining the scalar function

and then taking the differential of v(x):

- T =1 T
do = 2[(x-x)' F} F - (M) F Jax
Tl (19)
+ dx Fo By dX
At a mininum of ¢(x), d¢ may not change sian when dx changes sign.
Therefore a necessary condition for a minimum of ¢(x) is
1 sl T &
(x-x))' EJF, = (M) E =0
or
T S
Fofo (x-xg) = Eg (t-hy) . (20)
The deviation X-X, of the element values from their nominal value \\\~
‘may be found from (20) if the nxn matrix gzg is non-singular, which
requires in this case that vank (F) = n.%

t, & M(x)) . The minimization of the norm is accomplished by

no

o(x) = [[F (x-x ) - 01—&10)112

[Folx-2xg) = (+MIT IF (x-x) - (-11)]

=3 sl
= (x=x )T FLE (xx,) . (18)
-2(m ) (xx)
+ )T ()

t e do not necessarily recommend using (20) to determine the parameter set X
of the faulted network, although this may be the most efficient approach.
See Section 3 for a discussion of computational complexity.




Since m2n, the mxn Jacobian matrix F has at least as many rows
as columns, and the maximum rank of F is n. The rank of F is less than
n if any column of F is a linear combination of the remaining columns.
The simplest case is that a coluun is a constant multiple of another

column. Suppose, for example, (col i) = a (col j), i.e.

aMk aNk
37?‘&7; k=N 2, o) (21}

One obvious way this can occur is if parameters X; and xj are two like

elements in series or parallel. Suppose that X and Xj are the con-

A

ductances of two resistors in parallel, so that y 4 xi+xi is the

~

combined conductance. A1l transfer functions which do not access

separately the inputs or outputs of X5 and X may be written Nk(y,g).

A

where z is the vector of all network parameters except X; and X+ How

~

the partial derivatives of M, with respect to Xy and X5 are

K
Xy ay Ay ay : (22)
X1
i P S i
ax; Wy A dy

Thus (21) applies with a=1, as asserted. This result, that ne dis-
tinction can be made between imbedded like element kinds in series
br parallel, is intuitively reasonable.

A less obvious example of column dependency is illustrated by
the simplified cascaded amplifier circuit shown in Figure 2. Define

the transfer functions and network parometers

i il o




oo i

aa]

M‘ =y R] Xy = R‘
M= 2 = GgefiRs X = Ry
Wy = 25 = Ry kg ® Ry
X2 % 9m
X5 = 92

0 - .- 2
! +! ! + !
Y1 G)qmlvl > ok

‘
;T’ ‘j _2 3 qm2V3 T’R3

o 2'
Figure 2 - Simplified Cascaded Amplifier

The transimpedance 210 is not used in this example because its value
is zero. The Jacobian matrix {ani/axj} is
1 0 0 0 0
n J
IR ImInMiRs Ta%meMiRe  ImeRiRR3  gmRiRaR,

0 0 1 0 0

If I and g, are equal, then columns 4 and 5 are identical. This

doesn't reduce the rank of F in this case (the rank of F is 3), but

it could in practical cases where F has wmore rows than columns (m>n).

Continuing with the problem of column dependency, suppose X3 is

the conductance of a resistor in parallel with a capacitor of

capacitance xj, and x = xi+juxj is the combined admittance. All

transfer functions which do not access separately the inputs or

outputs of parameters X; and xj may be written MK(x,g), where 2 is

the vector of all network parameters except X and xj. The partial




derivatives of MK with respect to X; and xj are

aMk M, e oM,
axi ax ax,i X

oM, M o
ox XX

J

" oy

Thus (21) applies with a=jw . Columns i and j of I are dependent,

so rank F < n and the nxn matrix fT[_cannot be invorted, since

rank ET§_< n, if m2n. As a consequence, (20) cannot be solved for
the new parameter vector. We have discovered the surprising result
that the identification problem cannot be perfectly resolved if the
number of measurements is at least as great as the number of
parameters and thé network contains imbedded e]éments in parallel
(or in series). That rank (F) < n in this case will be illustrated
now by an example.

In this example it is necessary that m2n , and we have chosen

the simple 2-port network illustrated in Fiqure 3 in which m=n=3.

Figure 3 - Two-port Network.




5 I We choose the three transfer functions and parameters
M = " .‘.1 - % ch + QG Xy = L
1 "IN "R )
M2 = yzl " ch + G x2 = c
N3".Y22=ij+G xsn(‘,
E | M
A The Jacobian matrix { BK“'} is
J*
e e
J(\\L
F = 0 Jw 1
0 Jw 1

as asserted, columns 2 and 3 of F are dependent. Since rank
F = 2, the fault analysis problem cannot be fully resolved for
this problem.

In some cases the column dependency can be removed by
increasing the number of measurements by using another frequency.
In this example if M]. M2 and M3 are defined as before at frequency
W=y and M4, HS and M6 arc the same transfer functions at frequency

W the Jacobian matrix is

' _" »‘1”2' j(d] 1 ]
.l . j“]L
0 \ 1 B
| - 0 oy 1
| -ty dy
‘? j(x\zl.
§ 0 jm2 1
i |
2o Juy &
| and rank (F) = 3.
! 22 |

A2 W“-."}b’lﬁ-&‘»wuw TR




Another way to handle the problem is to split the transfer

functions into their real and imaginary parts. Continuing the

example, define the transfer functions and parameteré

A
M] = \e(y]]) = @ Xy ® L
A ¥ 1
M2 ; Im(y]]) = ol - - X, = C
My z RQ(yZI) = G X3 = G
My = Im(yZI) = wl

Nowm = 4, n = 3, and the Jacobian matrix is

TR 0 | 88
*l? W 0
F = (l\l..
= 0 0 1
4 w 0 |

and again rank (F) = 3. Since M1 and M3 are identical, rows 1 and 3
of F are the same. This doesn't reduce the rank of F, but it is clear
that M3 may be discarded without reducing the information of the
measurements.

From the discussion above we conclude that the measurements
should be split into their real and imaginary parts, and more than
one frequency should be used, if necessary, to make the number of ~
measurements at least as areat as the number of network parameters
(m2n).

In practical examples a considerable amount of computation is
needed to find the functional form of the elements of the Jacobian
matrix. Sen and Saeks use such functional forms in their discussion

of the problem of independent measurements [6] - [8], but admit that

no theory yet exists for choosing measurements while taking numerical




considerations into account.

In view of the discussion above, it appears that the most
practical approach to the problem of identifying a sufficient
number of independent measurements (m2n) is to examine the
numerical conditioning of the nxn matrix [Tf<, evaluated from
the nominal network pavameters. An algorithm for evaluating cond
([TF)f is given by Forsythe and Moler [12].

Establishing a useful set of independent measurements
requires secarching for min cond (fTF) over various sets of trial
measurements and frequencies. This time consuming search scems
most suitable to a "simulation before test" process; i.e., the
best set of measurcments is established from the circuit model
before testing the faulty circuit. The contract period was not
sufficiently long to permit tryina this procedure, but a working

algorithm is in preparation.

s e R S i A

2.2.1  Computing the Jacobian Matrix
The Jacobian matrix is defined by F & [aMi(f)/axj].
We have taken the network responses M(x) to be the real and
imaginary parts of the y-parameters at the accessible

terminals, where, from (4),

| -~
v - "1 T AT
| Y 5—17—%’11 MYk ()" Ay (26)
Y= (1= YR *a) (Y- YM4+G)
;
I t+ If A is a square matrix, cond (A) is defined to be the ratio of the largest

to smallest eigenvalue in absolute value. Therefore cond (A) > 1, and larae
values for cond {A) indicate nearly singular matrices for which the numerical
evaluation of A=' may be meaningless.

wle




and so we want to compute ax/axi. Making use of the identity

ax axX

and after much algebraic simplification, we find that

o SN [1 - Y, Al (A.V,A (1 AT(AYA)‘AYJ T
By S R T chg A -\ b

(27)

In (27) the second term in square brackets,

L - AE (AQY A 3. i ~1a_b] , 1s available from the nominal

analysis.+ The first term in square brackets,

|
[r- YbA18
in square brackets. In fact, if the network model contained

(A ALY {A > ]A ] , is very similar to the second term

no controlled sources, !b

terms would be the transpose of one another. The right side

would be symmetrical, and these two

of (27) could be computed very efficiently in this case,
especially since :)Xb/ax,i is very sparse. Unfortunately we
cannot take advantage of this simplification, because the
circuits of greatest concern contain controlled sources.

An algorithm for computing the right side of (27) as
efficiently as possible, taking advantage of the sparseness
of aY /ax , has been written. The reader is referred to the

listing of subroutine JACCOL in Appendix 1.

T The term appears in equation (4) and is computed as the array D(-,*) in
subroutine YMAT., The listing may be found in Appendix 1.




Computational Complexity

The algorithm described in Section 2.1 makes use of a formula of
Householder [11], which eliminates the need to invert thé inaccessible
nodal admittance matrix Y' to calculate the accessible transfer functions
y each time a parameter is changed.t In this section we compare the amount
of computation required to complete the search for min ||ﬁ(§)-él| using
this efficient algorithm to the amount of computatio;_which would be re-
quired if 16 were directly inverted at cach step of the search.

The computational complexity will be described in terms of the number
of complex multiplications performed by the algorithm. This depends on
the network configuration and specifically on the number of accessible
nodes, inaccessible nodes, branches, controlled sources, etc. The
computational complexity of the efficient algorithm is even more difficult
to estimate since it depends in additioﬁ, on such measures as the fraction
of branches terminating on two inaccessible nodes, the fraction of branches
terminating on only one inaccessible node, etc. For these rcasons we have
made the following assumptions: the total number of network parameters n
is 1.1 times the number of branches, the number of brenches is 2.2 times
the number of inaccessible nodes, 45% of the branches terminate on 2
inaccessible nodes, 55% of the branches terminate on exactly 1 inaccessible
node. Using these assumptions, the computational complexity can be calcu-
lated in terms of the number of inaccessible nodes, q.

The basic steps required to compute the measurable y-parameter matrix
y are the same for both the direct and the efficient algorithms: (1) the
new branch admittance matrix 16 is formed; (2) then the new nodal admittance

matrix Ié is formed and inverted; (3) finally y is computed.

¥ see equations (4) - (7).




—

Steps (1) and (3) are identical in both the efficient and the

direct methods. Making use of the assumptions discussed above, step

(1) requires about 0.0qu'complex multiplications, and step (3) requires
about 13.31q2 complex multiplications for a total of about 13.3bq? complex
multiplications for steps (1) and (3) combined.

Using the efficient algorithm to invert Yo discussed in Section 2.1,
step (2) requires about q2 + 3.45q + 4.21 complex multiplications. Using
the direct inversion of Y. , step (2) requires about 5q3 + 0.61q complex
multiplications.

The total number of compiex muitiplications necessary to find the
measurable y-parameters y after a single parameter is chanood is there-
fore 14.36q2 + 3.45q + 4.21 using the efficient algorithm and
5q3 + 13.36q2 + 0.16q using the direct algorithm. The efficient alaorithm
is clearly very superior.

A Fibonacci search using 7 evaluations of y is performed for each
parametef. and the number of parameters is assumed to be 1.1 times the
number of branches or about 2.42q. Thus the number of complex multipli-
cations required to search over all parameters is 16.94q times the values

cited in the previous paragraph. These results are shown in Figure 4 as

a function of the number of inaccessible nodes q.
f ﬁ We close this section with a discussion of the computational
complexity of forming (20) and solving for the unknown parameters X.
Three steps are required:
é_: (1) form the Jacobian matrix F, which has a column for each

parameter and a row for every measurement;

T

(2) form the product F.'F;

Al (3) solve for x .
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Figure 4 - The computational complexity of the parameter search.
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9.29q" + 26.l4q2 real multiplications per parameter for a total of

i , I Using the assumptions discussed previously, step (1) requires about
|
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